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Abstract 14 

Most pedotransfer functions (PTFs) have adopted soil texture information as the main 15 

predictor to estimate soil hydraulic properties, whether inputs are defined in terms of the 16 

relative proportion of different grain size particles or texture-based classifications. The 17 

objective of this study was to develop ternary diagrams for estimating soil water retention at -18 

33 and -1500 kPa matric potentials, corresponding to the field capacity and wilting point, 19 

respectively, from particle size distribution using a geostatistical approach. The texture 20 

triangle was divided into a 1% grid of soil texture composition resulting in 4332 different soil 21 

textures. Measured soil water retention values determined in 742 soil horizons/layers located 22 

in Portugal were then used to develop and validate the ternary diagrams. The development 23 

subset included two-thirds of the data, and the validation subset the remaining samples. The 24 

soil water content values were displayed in the ternary diagram according to the coordinates 25 

given by the particles size distribution determined in the same soil samples. The measured 26 
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 2 

volumetric water content values were then interpolated to the remaining areas of the ternary 27 

diagrams using ordinary kriging. Uncertainty analysis resulted in a root mean square error of 28 

0.040 and 0.033 cm
3
 cm

-3
 obtained when comparing the interpolated water contents at -33 and 29 

-1500 kPa matric potentials values, respectively, with the measured ones included in the 30 

validation dataset. The estimation variance was also considered to access the uncertainty of 31 

the estimations. The available water content of Portuguese soils was then derived from both 32 

ternary diagrams. The ternary diagrams may thus serve as simplified tools for estimating 33 

water retention properties from particle size distribution and eventually serve as an alternative 34 

to the traditional statistical regression and data mining techniques used to derive PTFs. 35 
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1. Introduction 40 

Modern hydrologic modeling studies require a quantitative and precise understanding of soil 41 

hydraulic properties. That information is essential for a wide range of applications, such as 42 

research on soil and water conservation, irrigation scheduling, solute transport, virus and 43 

bacterial migration, plant growth, and plant stress. However, classical methods for direct 44 

measurement of soil hydraulic properties (Dane and Topp, 2002) are known to be costly, time 45 

consuming, and impractical for large-scale applications in which many samples are required 46 

to quantify the spatial and temporal variability of those properties. Hence, pedotransfer 47 

functions (PTFs) have been developed as an alternative to classical methods to indirectly 48 

estimate soil hydraulic properties from basic soil physical and chemical properties (Bouma, 49 

1989; Vereecken et al., 1989; McBratney et al., 2002; Pachepsky and Rawls, 2004), thus 50 
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overcoming some of the limitations mentioned earlier, especially when the objective is to 51 

characterise soil hydraulic properties at large scales. 52 

Most of the available PTFs use soil-texture-based information as the main predictor to 53 

estimate the hydraulic behaviour of soils. This popular option is justified by the fact that soil 54 

texture characteristics are among the most easily measured soil properties, and also by the 55 

assumption that soil texture is the dominant soil variable in determining hydraulic properties, 56 

while other soil variables, such as bulk density or organic matter content, have a secondary 57 

effect (Twarakavi et al., 2010). The simplest texture based PTFs were developed to provide 58 

estimates of average soil water retention properties or hydraulic parameters for different 59 

texture classes (e.g., Wösten et al., 1995; Schaap and Leij, 1998; Bruand et al., 2003; Al 60 

Majou et al., 2008; Ramos et al., 2013a). More complex functions have also been developed 61 

by relating the particle size limits of the soil constituents to soil hydraulics using multiple 62 

regression analysis or data mining tools (e.g., Gupta and Larson, 1979; Saxton et al., 1986; 63 

Schaap et al., 2001; Nemes et al., 2006; Haghverdi et al., 2012). Although the hierarchical 64 

approaches followed in many of those studies showed that the accuracy of PTFs improved 65 

considerably when other variables (usually bulk density), rather than soil texture information 66 

alone, were used also as predictors, texture based PTFs have been considered to also provide 67 

reasonably accurate estimates of soil hydraulic properties for many research and technical 68 

applications (Vereecken et al., 2010). 69 

Soil texture is normally represented in a ternary diagram, function of sand, silt and clay 70 

percentages, where the limits of the texture classes vary according to the texture classification 71 

system used. However, the soil texture triangle has also had more applications than simply 72 

grouping texture information data, namely it has also been used as a tool to estimate soil 73 

hydraulic properties. Saxton et al. (1986) divided the soil texture triangle into grids of 10% 74 

sand and 10% clay content increments to develop texture based PTFs for generalized 75 
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predictions of soil hydraulic properties in each grid cell. Later, Saxton and Rawls (2006) 76 

updated the previous work to further include the effect of organic matter, bulk density, gravel, 77 

and salinity in their model and provide a broadly applicable predictive system. The developed 78 

model has been successfully applied to a wide variety of analysis, particularly those related to 79 

agricultural hydrology and water management, since estimates do not involve complex 80 

mathematical methods, and the texture triangle serves as a familiar tool to users for estimating 81 

the soil water characteristics. Twarakavi et al. (2010) also focused on the relations between 82 

the texture triangle and soil hydraulic properties. Those authors estimated soil hydraulic 83 

properties throughout the entire soil texture triangle as a function of sand, silt, and clay 84 

contents using the ROSETTA PTFs (Schaap et al., 2001) such that the various soil texture 85 

possibilities (i.e., combinations of sand, silt, and clay percentages) were considered. They 86 

then concluded that although the soil texture triangle was qualitatively very similar to the soil 87 

hydraulic triangle, differences existed especially for soils where capillary forces dominate the 88 

flow throughout the soils. Bormann (2007) took those studies one step forward and performed 89 

water balance calculations for the entire space of the soil texture triangle, after dividing it into 90 

1% grid cells and applying Rawls and Brakensiek (1985) PTFs for obtaining the soil 91 

hydraulic properties. 92 

In this study, a geostatistical approach was used to spatial interpolate water retention 93 

values (the field capacity and wilting point) available in a soil database (Gonçalves et al., 94 

2011) throughout the entire soil texture triangle. Kriging is generally considered to be the best 95 

method for spatial interpolation that also includes information on uncertainty (Goovaerts, 96 

1999, 2001). Although there are countless applications to its application in soil science, as far 97 

as we know the kriging estimator has never been used as a PTF to actually derive soil 98 

hydraulic properties from basic soil data. To proceed with this study, three very basic 99 

assumptions had to be validated: 100 
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(i) Soil texture and soil water retention properties available in the database were 101 

assumed as being determined in the same sample. This is usually not the case in most PTFs 102 

where the predictors used in their development, although measured in the same soil horizon, 103 

are not always determined directly on the soil samples used for measuring the hydraulic 104 

properties. As referred by Vereecken et al. (2010), this becomes more important as the spatial 105 

and temporal variability of additional soils information increase and the information content is 106 

not related anymore to the samples on which the hydraulic properties were determined. Thus, 107 

taking into account the size of the database used in this study, the error resulting from this 108 

assumption was not considered to be relevant. 109 

(ii) Soil texture was assumed as the main predictor to estimate soil hydraulic properties. 110 

As mentioned earlier, this is the main assumption sustaining all texture based PTFs, since 111 

these two soil properties normally exhibit a high correlation. 112 

(iii) The spatial continuity of soil hydraulic properties along the soil texture triangle 113 

could be described by means of a variogram. Taking into account that soil texture is the main 114 

soil property considered when grouping soils having similar water retention curves (Wösten et 115 

al., 1995; Bruand et al., 2003; Ramos et al., 2013a), and that the soil texture triangle and the 116 

soil hydraulic triangle can be relatively similar (Twarakavi et al., 2010), we assumed that 117 

there could be a spatial dependence of soil hydraulic properties, at least within the limits of 118 

each soil texture class. The percentage units that define the texture triangle were thus 119 

converted into metric units to allow the application of geostatistics. 120 

The objective of this study is thus to develop ternary diagrams for estimating point 121 

specific water retention values (the field capacity and wilting point) of Portuguese soils using 122 

a geostatistical approach. The available water capacity was later computed from both ternary 123 

diagrams. 124 

 125 



 6 

 126 

2. Material and Methods 127 

2.1. The data set 128 

The ternary diagrams were developed for estimating the field capacity and wilting point of 129 

Portuguese soils from particle size distribution. The field capacity and wilting point were here 130 

assumed to correspond to the water retention values at -33 and -1500 kPa, respectively. The 131 

data was extracted from the PROPSOLO soil database (Gonçalves et al., 2011), which gathers 132 

all information on soil hydraulic and pedological properties from soil profiles obtained from 133 

research projects and academic studies performed at the Portuguese National Institute of 134 

Agronomic and Veterinarian Research (former Estação Agronómica Nacional). This database 135 

contains practically all of the existing knowledge on the soil hydraulic properties of 136 

Portuguese soils (with the exception of a few specific retention points found in soil survey 137 

studies). 138 

The data included information on soil texture and water retention properties of 742 139 

horizons/layers studied in 346 soil profiles located in Portugal between 1977 and 2012 (Fig. 140 

1). The soil reference groups (FAO, 2006) represented were Fluvisols (36.4%), Luvisols 141 

(29.5%), Vertisols (9.8%), Cambisols (8.7%), Calcisols (6.6%), Anthrosols (4.0%), Arenosols 142 

(1.4%), Podzols (0.9%), Regosols (0.9%), Ferralsols (0.6%), Leptosols (0.6%), and Planosols 143 

(0.6%). 144 

The data was randomly divided in two subsets, a development set composed of two-145 

thirds of the data (495 horizons/layers), and a validation set with the remaining one-third of 146 

the data (247 horizons/layers). Table 1 presents the main physical and chemical properties of 147 

the two datasets. The particle size distribution was obtained using the pipette method for 148 

particles having diameters <2 μm (clay) and between 20–2 μm (silt), and by sieving for 149 

particles between 200–20 μm (fine sand) and between 200–2000 μm (coarse sand). These 150 
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textural classes follow the Portuguese classification system (Gomes and Silva, 1962) and are 151 

based on the International Soil Science Society (ISSS) particle limits (Atterberg scale). The 152 

organic carbon (OC) content was determined by the Walkley–Black method (Nelson and 153 

Sommers, 1982). The dry bulk density (ρb) was obtained by drying volumetric soil samples 154 

(100 cm
3
) at 105 ºC for 48 h. The gravimetric water content at -33 kPa matric potential was 155 

determined on undisturbed soil samples (100 cm
3
) using suction tables (Romano et al., 2002; 156 

used in 494 horizons/layers) or the pressure plate apparatus (Dane and Hopmans, 2002; used 157 

in 212 horizons/layers). The gravimetric water content at -1500 kPa matric potential was also 158 

determined on undisturbed soil samples (100 cm
3
) using the pressure plate apparatus. Then, 159 

the volumetric water content for each horizon/layer and each matric potential was computed 160 

from the gravimetric water contents and the bulk density of the corresponding horizon/layer. 161 

In the case of 36 soil horizons/layers where the volumetric water content at -33 kPa 162 

matric potential was not readily available, the missing values were estimated by introducing 163 

values derived from the fitted van Genuchten model (1980) to each individual water retention 164 

curve, also available in the soil database for all soil horizons/layers. The van Genuchten 165 

model describes the volumetric soil water content, θ (L
3
 L

-3
), as a function of matric potential, 166 

ψ (L), in the following form: 167 
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in which Se is the effective saturation, r and s denote the residual and saturated water 169 

contents (L
3
 L

-3
), respectively,  (L

-1
) and  (-) are empirical shape parameters. This 170 

procedure introduced an error to the subsequent calculations and model evaluations resulting 171 

from the non-perfect fit of the fitted model to the experimental data (RMSE = 0.012 cm
3
 cm

-
172 

3
), in line with published results (e.g., Nemes and Rawls, 2006; Ramos et al., 2013a). The 173 
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errors were thus relatively small compared with the errors usually obtained using PTFs, and 174 

therefore, the fitted values were assumed as if they were measured. 175 

 176 

2.2. Development of the ternary diagrams 177 

The soil texture triangle was divided into a 1% grid of soil texture composition resulting in 178 

4332 different soil textures (i.e., different combinations of sand, silt, and clay percentages). 179 

Figure 2 shows the textural distribution of the datasets used for the development of the ternary 180 

diagrams and for their validation. The soil texture triangle was converted into ternary 181 

diagrams by replacing the percentage units by metric units (cm were used for convenience), 182 

and by including the soil water retention values at -33 and -1500 kPa matric potentials in the 183 

coordinates given by the particles size distribution determined in the same soil samples. 184 

Measured θ-33 kPa and θ-1500 kPa within the same location (i.e., same particle size distribution) 185 

were averaged. The measured volumetric water content values θ-33 kPa and θ-1500 kPa were then 186 

interpolated to the remaining areas of the ternary diagrams using ordinary kriging. 187 

The spatial pattern of θ-33 kPa and θ-1500 kPa in each ternary diagram was first described 188 

from the semi-variance of the differences between measured values included in the 189 

development set using the experimental semivariogram (Goovaerts, 1997; Yates and Warrick, 190 

2002), as follows: 191 

  
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where n(h) is the total number of pairs of observation points (xi and xi+h; i = 1, …, n) of the 193 

variable Z (i.e., θ-33 kPa and θ-1500 kPa) that are separated by a distance h. The omnidirectional 194 

semivariogram was computed, and hence the spatial variability was assumed to be identical in 195 

all directions. The variogram was defined by assigning pairs of measured values of θ-33 kPa and 196 

θ-1500 kPa to a lag interval of 5 cm (hi = i 5 cm), since data was irregularly distributed in the 197 

texture triangle (Fig. 2). A theoretical variogram was then fitted to the experimental 198 
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semivariogram using a Gaussian model with nugget effect (Goovaerts, 1997; Yates and 199 

Warrick, 2002): 200 
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where C0 is the nugget (-), C1 is the sill (-), and a is the range (L). The nugget, C0, is a 202 

measure of discontinuity at the origin of the semivariogram which mainly arises from various 203 

sources of unexplained errors, such as measurement errors or the existence of spatial 204 

variations at distances smaller than the shortest sampling interval. The sill, C1, should be 205 

approximately equal to the variance of the data. Finally, the range, a, corresponds to the 206 

distance at which the semivariance approaches the sill, and represents the separation distance 207 

beyond which two values of the variable can be considered statistically independent. 208 

Ordinary kriging was the geostatistical interpolation method selected (Goovaerts, 1997; 209 

Yates and Warrick, 2002). The kriging estimator, Z
*
(x), provided an estimate of θ-33 kPa and θ-210 

1500 kPa at a location x0 of the ternary diagram that contained no information. The estimator is 211 

written as a linear combination of the measured values, Z(xi), that is, 212 

    



n

1i

ii0

* xZxZ  (4) 213 

where the observation at each location was weighted by λi. The value of λi depended on its 214 

proximity and orientation to x0 and to the other sample locations, xi. Since by definition, 215 

      
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1i

ii0
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and 217 

    mxZE   (6) 218 

the estimates will be unbiased (i.e., E[Z(x) – Z
*
(x0)] = 0). The following ordinary kriging 219 

system was solved in order to minimize the prediction variance: 220 
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 (7) 221 

where E[ ] is the expected value, m is the mean value of Z(x), γ is the semivariance between 222 

data pairs, µ is the Lagrange parameter accounting for the constraint on the weights, and k = 223 

1, …, n. 224 

The variograms calculation and fitting, and the implementation of the kriging method 225 

were carried out with the geoMS software package (CMRP, 2000). 226 

 227 

2.3. Uncertainty analyses 228 

The uncertainty of the ordinary kriging interpolation estimates was considered to be the 229 

estimation variance in each grid cell of the ternary diagrams. The estimation variance σ
2
 gives 230 

an indication of the quality of the estimates and was computed as follows (Goovaerts, 1997; 231 

Yates and Warrick, 2002), 232 
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The ternary diagrams were also validated by comparing measured θ-33 kPa and θ-1500 kPa 234 

values included in the validation dataset with ordinary kriging estimates using various 235 

quantitative measures of the uncertainty, such as the determination coefficient (R
2
), the mean 236 

error (ME), and the root mean square error (RMSE), given by: 237 
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where n is the number of observations, Oi are the measured values, Pi are the interpolation 241 

predictions, O  is the average of the measured values, and P  is the average of the 242 

interpolation predictions. 243 

 244 

 245 

3. Results and Discussion 246 

3.1. Spatial patterns of θ-33 kPa and θ-1500 kPa 247 

Figure 3 presents the experimental and theoretical semivariograms obtained for θ-33 kPa and θ-248 

1500 kPa. The fitted parameters of the Gaussian model are given in Table 2. The nugget value 249 

found for θ-33 kPa and θ-1500 kPa corresponded to 15.4 and 6.1% of the total variance (C), 250 

respectively. As referred above, these values can be explained by sampling or measurement 251 

errors, and by variability that occurs at scales too small to characterize, which in this case 252 

correspond to variability that cannot be explained only by variations in soil texture. This 253 

unexplained variability is surely attributed to the effect of bulk density, organic matter, soil 254 

structure, soil mineralogy, soil chemical composition, and land use and management on water 255 

retention properties. Like in the development of traditional PTFs, grouping data by 256 

considering the effect of those soil properties (Wösten et al., 2001) would likely be 257 

advantageous in order to reduce the unexplained variability found in the development of the 258 

ternary diagrams. However, that approach would require a much larger database than the one 259 

currently available. The larger nugget value found for the semivariogram of θ-33 kPa may be 260 

further related to the different methodologies used for measuring water retention at -33 kPa 261 

matric potential (Schaap and Leij, 1998). 262 



 12 

The spatial continuity of θ-33 kPa and θ-1500 kPa reached a range of 39.7 and 24.6 cm in the 263 

ternary diagrams, respectively. Water retention values were thus correlated with samples 264 

located in neighbor texture classes, but more distanced areas of the texture triangle showed no 265 

correlation with those measured values. These findings seem to be very useful to understand 266 

the limitations of the simplest texture based PTFs, the class-PTFs (Wösten et al., 2001), when 267 

estimating water retention properties for different texture classes. These class-PTFs estimate 268 

average soil water retention properties for different texture classes based on the arithmetic 269 

(e.g., Bruand et al., 2003; Al Majou et al., 2008; Ramos et al., 2013a) or geometric mean 270 

(e.g., Wösten et al., 1995, 1999) of the datasets. However, for most regions of the texture 271 

triangle water retention values are sometimes better correlated with data included in their 272 

vicinity which may well be included in a neighbor texture class. 273 

 274 

3.2. Ternary diagrams 275 

Figure 4 presents the ternary diagram developed by ordinary kriging for estimating θ-33 kPa 276 

from particle size distribution. The resulting estimation variance is also shown in the same 277 

figure. Soil water retention values at -33 kPa matric potential were lower in the coarser 278 

texture classes and increased gradually with the increment of clay and silt contents. Basically, 279 

the ordinary kriging method calculated θ-33 kPa for all 4332 grid cells of the ternary diagram as 280 

a kind of weighted average of the measured values in the vicinity of each grid cell. The 281 

neighboring sample point values were weighted according to the semivariance as a function 282 

of distance to the prediction location. The kriging method also compensated for the effects of 283 

data clustering, by assigning individual points within a cluster less weight than isolated data 284 

points. This showed to be particularly useful when interpolating water content values to 285 

regions of the texture triangle where the information available in the development set was 286 

scarcer. 287 
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The mean and standard deviation values of the interpolated θ-33 kPa ternary diagram were 288 

0.365 and 0.086 cm
3
 cm

-3
, respectively. The mean value was thus higher than the one 289 

registered in the development dataset (0.287 cm
3
 cm

-3
; Table 1). The difference found resulted 290 

from the fact that the interpolated ternary diagram estimated θ-33 kPa for all 4332 soil textures, 291 

including regions of the texture triangle where the development dataset had no information 292 

(e.g., the silty texture class, and the region of the texture triangle with clay content higher than 293 

65%), thus producing significant differences in the classes of the interpolated histogram with 294 

higher water contents (not shown). The estimation variance was very high in those regions, 295 

and thus local estimates of θ-33 kPa were not realistic (Fig. 4). For the remaining regions of the 296 

ternary diagram, the estimation variance was low and estimates were considered to be 297 

accurate. In these regions, the mean value given by the kriging estimator (m = 0.338 cm
3
 cm

-3
 298 

where, for example, σ
2
 ≤ 0.002) and the mean value of the development dataset tended to be 299 

closer. 300 

Figure 5 presents the interpolated θ-1500 kPa ternary diagram and the respective estimation 301 

variance. Soil water retention values at -1500 kPa matric potential were also lower in the 302 

coarser texture classes and increased progressively with the increase of clay content. 303 

However, soil water retention did not increase as gradually as registered for the θ-33 kPa ternary 304 

diagram, since there are a few regions of the texture triangle (e.g., the area in the vicinity of 305 

the soil texture with 50% clay, 32% silt, and 18% sand) that clearly needed more information 306 

when estimating θ-1500 kPa. The mean and standard deviation values of the interpolated θ-1500 kPa 307 

ternary diagram were 0.216 and 0.101 cm
3
 cm

-3
, respectively. The mean value was once again 308 

higher than the one in the development dataset (0.162 cm
3
 cm

-3
; Table 1), but it was slightly 309 

lower where σ
2
 ≤ 0.002 (m = 0.204 cm

3
 cm

-3
). 310 

The results of the goodness-of-fit tests between measured and estimated water retention 311 

values at both matric potentials are presented in Table 3. Figure 6 shows the corresponding 312 
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scatter plots between measured and estimated values. The kriging method produced an 313 

acceptable estimation of θ-33 kPa and θ-1500 kPa, with ME values being very close to zero. RMSE 314 

values also showed that estimates were relatively accurate. RMSE were 0.040 and 0.033 cm
3
 315 

cm
-3

 for the estimates of θ-33 kPa and θ-1500 kPa, respectively. The R
2
 values were considerably 316 

high and identical for both water contents (R
2
 > 0.78), indicating also a good agreement 317 

between measurements and predictions. However, data in the θ-1500 kPa scatter plot was found 318 

to be slightly more dispersing than for θ-33 kPa. 319 

Table 4 shows the accuracy of published PTFs that are available for estimating soil 320 

hydraulic properties of Portuguese soils, and which estimates can be compared with those 321 

obtained with the ternary diagrams. We limited our comparison to PTFs that used partially or 322 

the entire dataset used in this study. The class-PTFs developed by Ramos et al. (2013a) 323 

produced RMSE values that varied between 0.042 and 0.055 cm
3
 cm

-3
 when estimating θ-33 324 

kPa, and between 0.037 and 0.048 cm
3
 cm

-3
 when predicting θ-1500 kPa. The best estimates, 325 

achieved with the class-PTFs developed after grouping data by ISSS texture classes and bulk 326 

density, can be comparable with the estimates given by the ternary diagrams. The point PTFs 327 

developed by Ramos et al. (2013b) yielded RMSE values of 0.040 and 0.036 cm
3
 cm

-3
 also 328 

when predicting θ-33 kPa and θ-1500 kPa, respectively, thus producing very similar predictions to 329 

those given by the kriging method. On the other hand, the parametric PTFs developed by 330 

Gonçalves et al. (1997), Wösten et al. (1999), and Ramos et al. (2013b) resulted in slightly 331 

higher RMSE values (≥ 0.046 cm
3
 cm

-3
) than those calculated with estimates given by the 332 

ternary diagrams. Hence, Table 4 shows that similar or even better predictions of θ-33 kPa and 333 

θ-1500 kPa can be obtained with the ternary diagrams. The only predictor needed is the particle 334 

size distribution, while the other comparable PTFs require relatively more predictors than the 335 

needs of those diagrams. In terms of number of predictors, the ternary diagrams seem to be 336 

quite useful as they are the only PTFs that do not require bulk density, despite results are 337 
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given in terms of volumetric water contents. Although this soil property is simple to measure, 338 

sampling undisturbed samples in different soil horizons/layers distributed over large areas in 339 

order to measure bulk density may be a very laborious task. 340 

 341 

3.3. Available water capacity 342 

Figure 7 shows estimates of the available water capacity (AWC), calculated as the difference 343 

between θ-33 kPa and θ-1500 kPa, and setting soil depth to 1 m as reference for comparison 344 

between estimates. AWC was only calculated for areas of the ternary diagrams where the 345 

estimation variance of either θ-33 kPa or θ-1500 kPa was lower than 0.002. This value was chosen 346 

arbitrarily, but is much lower than the dataset total variance (Table 2). Therefore, we only 347 

considered estimates than may be considered reliable and avoided extrapolations produced by 348 

the kriging estimator. 349 

The largest AWC estimates were obtained for the medium fine texture classes. The 350 

coarser texture classes and the soils with 65% clay content seem to present lower AWC. 351 

However, the low estimates found for these latter soils are produced in a region of the ternary 352 

diagram where the estimation variance increases rapidly with the increase of the clay content, 353 

i.e., those predictions are near the limits of a region where the kriging estimator starts to 354 

extrapolate information instead of interpolating it, and thus care should be taken when using 355 

that information. Nevertheless, the histogram presented in Fig. 8 shows that estimates of the 356 

AWC have an average value of 134.1 mm/m, a variance of 3150.7, and kurtosis (0.45) and 357 

skewness (0.83) close to zero. However, the Chi-Square and Kolmogorov-Smirnov (p value =  358 

0.00 < 0.01) goodness-of-fit tests rejected the hypothesis that AWC is normally distributed at 359 

a level of 99% confidence since soil water content information in the very fine and medium 360 

fine texture classes is missing. 361 
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The ternary diagrams developed in this study (θ-33 kPa, θ-1500 kPa, and AWC) may 362 

potentially be useful for many scientific and technical domains, but they seem more relevant 363 

to agricultural water management, particularly irrigation management and scheduling. 364 

Various water balance models require the type of information provided by the ternary 365 

diagrams here developed at point scale (Liu et al., 1998; George et al., 2000; Chopart et al., 366 

2007; Steduto et al., 2009; Khaledian et al., 2009; Rosa et al., 2012). Those that are associated 367 

to a geographical information system and are applied at field scale (Troch et al, 1993; Fortes 368 

et al., 2005; Ojeda-Bustamante et al., 2007) can make even further use of the ternary diagrams 369 

here developed for estimating soil water retention properties of Portuguese soils. 370 

 371 

 372 

4. Conclusions 373 

The geostatistical approach was able to provide reliable estimates of soil water retention at -374 

33 and -1500 kPa matric potentials using only the relative proportion of different grain size 375 

particles (sand, silt, and clay) as input data. The ordinary kriging method was helpful to 376 

understand which estimates of the soil water retention were valid based on the values of the 377 

estimation variance, and thus extrapolations were avoided. 378 

The RMSE values were 0.040 and 0.033 cm
3
 cm

-3
 when comparing the estimates 379 

provided by the θ-33 kPa and θ-1500 kPa ternary diagrams, respectively, and the measured values 380 

included in the validation dataset. Those values are comparable to the estimates provided by 381 

most of the available PTFs for estimating soil water retention properties of Portuguese soils. 382 

The ternary diagrams may thus serve as simplified tools for estimating those properties from 383 

particle size distribution and eventually serve as an alternative to the traditional statistical 384 

regression and data mining techniques used to derive PTFs. 385 

 386 
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Table 1 

Main physical and chemical properties of the datasets used in the development and validation 

of the ternary diagrams. 

Statistics 

Particle size distribution 
Organic 

carbon 

Bulk 

density 

Volumetric water contents 

2000-200 

μm 

200-20 

μm 

20-2 

μm 

<2 

μm 
θ-33 kPa θ-1500 kPa 

(%) (g kg
-1

) (g cm
-3

) (cm
3
 cm

-3
) 

Development set (n = 495) 

Mean 20.7 34.5 21.6 23.2 0.74 1.50 0.287 0.162 

Std. Deviation 17.7 15.2 11.8 14.7 0.54 0.18 0.089 0.081 

Minimum 0.1 0.7 1.1 0.6 0.00 0.91 0.029 0.007 

Maximum 94.4 70.7 68.1 63.3 2.51 1.90 0.536 0.407 
         

Validation set (n = 247) 

Mean 21.4 34.7 20.5 23.4 0.72 1.52 0.282 0.158 

Std. Deviation 17.1 15.4 12.4 14.3 0.52 0.18 0.086 0.073 

Minimum 0.1 0.8 0.9 0.1 0.00 0.92 0.029 0.006 

Maximum 94.6 73.6 60.2 62.2 2.21 1.87 0.535 0.359 
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Table 2 

Parameters of the Gaussian model fitted to the experimental semivariograms. 

Volumetric water 

contents 

Nugget 

C0 

(-) 

Sill 

C1 

(-) 

Total variance 

C 

(-) 

Range 

a 

(cm) 

θ-33 kPa 0.0012 0.0078 0.009 39.745 

θ-1500 kPa 0.0004 0.0066 0.007 24.604 
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Table 3 

Results of the statistical analysis between measured water retention values at -33 and -1500 

kPa and ordinary kriging estimates. 

Statistics 
Volumetric water contents 

θ-33 kPa θ-1500 kPa 

R
2
 (-) 0.788 0.802 

ME (cm
3
 cm

-3
) -0.001 0.001 

RMSE (cm
3
 cm

-3
) 0.040 0.033 
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Table 4 

Accuracy of published pedotransfer functions in the estimation of water retention values at -

33 and -1500 kPa included in the database. 

PTFs Predictors 
RMSE (cm

3
 cm

-3
) 

θ-33 kPa θ-1500 kPa 

1. Class-PTFs    

Ramos et al. (2013a) FAO texture classes 0.055 0.048 

 FAO texture classes + depth 0.054 0.047 

 FAO texture classes + ρb 0.049 0.047 

 FAO texture classes + depth + ρb 0.047 0.046 

 ISSS texture classes 0.049 0.039 

 ISSS texture classes + depth 0.047 0.038 

 ISSS texture classes + ρb 0.042 0.037 

Wӧsten et al. (1999) FAO texture classes + depth 0.063 0.051 
    

2. Continuous PTFs    

2.1. Point PTFs    

Ramos et al. (2013b) Si20 μm, C, ρb, Z 0.040 0.036 
    

2.2. Parametric PTFs    

Gonçalves et al. (1997) CS, FS, Si20 μm, C, ρb, Z, OM, pH 0.046 0.053 

Wӧsten et al. (1999) Si50 μm, C, ρb, OM, depth 0.049 0.045 

Ramos et al. (2013b) CS, FS, Si20 μm, C, ρb, Z 0.084 0.051 

CS, coarse sand; FS, fine sand; Si20 μm, silt fraction at 20 μm; Si50 μm, silt fraction at 50 μm; C, clay; ρb, bulk 

density; Z, mean depth; OM, organic matter; depth, qualitative variable having the values 1 (topsoils) and 0 

(subsoils). 
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Fig 1. Location of the soil profiles. 
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Fig. 3. Experimental semivariogram of θ-33 kPa (top) and θ-1500 kPa (bottom) with the Gaussian 

model fitted. 
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Fig. 4. Ternary diagrams soil water content values at -33 kPa matric potential estimated with ordinary kriging (top) and estimation variance 

(bottom) of those estimates (figures on the left show the ISSS texture classes; figures on the right show the contour plots of the estimates). 
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Fig. 5. Ternary diagrams soil water content values at -1500 kPa matric potential estimated with ordinary kriging (top) and estimation variance 

(bottom) of those estimates (figures on the left show the ISSS texture classes; figures on the right show the contour plots of the estimates). 
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Fig. 6. Scatter plot of prediction of soil water content at -33 and -1500 kPa matric potentials 

with ordinary kriging versus measured values included in the validation dataset. 
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Fig. 7. Ternary diagram with estimates of the available water capacity (AWC). 
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Fig. 8. Histogram with estimates of the available water capacity (AWC). 


