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Most pedotransfer functions (PTFs) have adopted soil texture information as the main predictor to estimate
soil hydraulic properties, whether inputs are defined in terms of the relative proportion of different grain size
particles or texture-based classifications. The objective of this studywas to develop ternary diagrams for estimating
soil water retention (θ) at−33 and−1500 kPa matric potentials, corresponding to the field capacity and wilting
point, respectively, from particle size distribution using two geostatistical approaches. The texture triangle was
divided into a 1% grid of soil texture composition resulting in 4332 different soil textures. Measured soil water
retention values determined in 742 soil horizons/layers located in Portugal were then used to develop and
validate the hydraulic ternary diagrams. The development subset included two-thirds of the data, and the
validation subset the remaining samples. The measured soil water content values were displayed in the ternary
diagram according to the coordinates given by the particles size distribution determined in the same soil
samples. The volumetric water content values were then predicted for the entire ternary diagram using two
different geostatistical interpolation algorithms (ordinary kriging and the empirical best linear unbiased
predictor). Uncertainty analysis resulted in a root mean square error below 0.040 and 0.034 cm3 cm−3 when
comparing the interpolated water contents at −33 and −1500 kPa matric potential values, respectively, with
the measured ones included in the validation dataset. The estimation variance calculated with both methods
was also considered to access the uncertainty of the predictions. The available water content of Portuguese
soils was then derived from θ−33 kPa and θ−1500 kPa ternary diagrams developed with both approaches. The
hydraulic ternary diagrams may thus serve as simplified tools for estimating water retention properties from
particle size distribution and eventually serve as an alternative to the traditional statistical regression and data
mining techniques used to derive PTFs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modern hydrologic modeling studies require a quantitative and
precise understanding of soil hydraulic properties. That information is
essential for a wide range of applications, such as research on soil and
water conservation, irrigation scheduling, solute transport, virus and
bacterial migration, plant growth, and plant stress. However, classic
methods for direct measurement of soil hydraulic properties (Dane and
Topp, 2002) are known to be costly, time consuming, and impractical
for large-scale applications in which many samples are required to
quantify the spatial and temporal variability of those properties.
Hence, pedotransfer functions (PTFs) have been developed as an
alternative to classical methods to indirectly estimate soil hydraulic
properties from basic soil physical and chemical properties (Bouma,

1989; McBratney et al., 2002; Pachepsky and Rawls, 2004; Vereecken
et al., 1989), thus overcoming some of the limitations mentioned
earlier, especially when the objective is to characterize soil hydraulic
properties at large scales.

Most of the available PTFs use soil-texture-based information as the
main predictor to estimate the hydraulic behavior of soils. This popular
option is justified by the fact that soil texture characteristics are among
the most easily measured soil properties, and also by the assumption
that soil texture is the dominant soil variable in determining hydraulic
properties, while other soil variables, such as bulk density or organic
matter content, have a secondary effect (Twarakavi et al., 2010). The
simplest texture based PTFs were developed to provide estimates of
average soil water retention properties or hydraulic parameters for
different texture classes (e.g., Al Majou et al., 2008; Bruand et al.,
2003; Ramos et al., 2013; Schaap and Leij, 1998; Wösten et al., 1995).
More complex functions have also been developed by relating the par-
ticle size limits of the soil constituents to soil hydraulics using multiple
regression analysis or data mining tools (e.g., Gupta and Larson, 1979;
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Haghverdi et al., 2012; Nemes et al., 2006; Saxton et al., 1986; Schaap
et al., 2001). Although the hierarchical approaches followed in many
of those studies showed that the accuracy of PTFs improved consider-
ably when other variables (usually bulk density), rather than soil
texture information alone, were used also as predictors, texture based
PTFs have been considered to also provide reasonably accurate
estimates of soil hydraulic properties for many research and technical
applications (Vereecken et al., 2010).

Soil texture is normally represented in a ternary diagram, function of
sand, silt and clay percentages, where the limits of the texture classes
vary according to the texture classification system used. However, the
soil texture triangle has also hadmore applications than simply grouping
texture information data, namely it has also been used as a tool to
estimate soil hydraulic properties. Saxton et al. (1986) divided the soil
texture triangle into grids of 10% sand and 10% clay content increments
to develop texture based PTFs for generalized predictions of soil
hydraulic properties in each grid cell. Later, Saxton and Rawls (2006)
updated the previous work to further include the effect of organic
matter, bulk density, gravel, and salinity in their model and provide a
broadly applicable predictive system. The developed model has been
successfully applied to a wide variety of analysis, particularly those
related to agricultural hydrology and water management, since esti-
mates do not involve complex mathematical methods, and the texture
triangle serves as a familiar tool to users for estimating the soil water
characteristics. Twarakavi et al. (2010) also focused on the relations
between the texture triangle and soil hydraulic properties. Those
authors estimated soil hydraulic properties throughout the entire soil
texture triangle as a function of sand, silt, and clay contents using the
ROSETTA PTFs (Schaap et al., 2001) such that the various soil texture
possibilities (i.e., combinations of sand, silt, and clay percentages)
were considered. They then concluded that although the soil texture
triangle was qualitatively very similar to the soil hydraulic triangle,
differences existed especially for soils where capillary forces dominate
the flow throughout the soils. Bormann (2007) took those studies one
step forward and performed water balance calculations for the entire
space of the soil texture triangle, after dividing it into 1% grid cells and
applying Rawls and Brakensiek (1985) PTFs for obtaining the soil
hydraulic properties.

Following those studies on the prediction of soil hydraulic properties
for the entire space of the soil texture triangle, we propose a novel
geostatistical approach to obtain the spatial distribution of water
retention values (the field capacity and wilting point) available in a
soil database (Gonçalves et al., 2011). Ourwork presents the application
of two geostatistical methods, one using ordinary kriging (Goovaerts,
1999, 2001) and the other using the empirical best linear unbiased
predictor (EBLUP) based on residual maximum likelihood (REML) esti-
mation of the spatial variance model as proposed by Lark et al. (2006).
This secondmethod includes the texture PTF as a trendmodel. Although
there are countless applications of these methods in soil science, as far
as we know these estimators have never been used as PTFs to actually
derive soil hydraulic properties from basic soil data. To proceed with
this study, three very basic concepts were established:

(i) Soil texture and soil water retention properties available in the
databasewere assumed as being determined in the same sample.
This is usually not the case in most PTFs where the predictors
used in their development, although measured in the same soil
horizon, are not always determined directly on the soil samples
used for measuring the hydraulic properties. As referred by
Vereecken et al. (2010), this becomes more important as the
spatial and temporal variability of additional soil information
increases and the information content is not related anymore to
the samples onwhich the hydraulic properties were determined.
Thus, taking into account the size of the database used in this
study, the error resulting from this assumption was not consid-
ered to be relevant.

(ii) Soil texture was considered the main predictor to estimate soil
hydraulic properties. As mentioned earlier, this is the main
assumption sustaining all texture based PTFs since these two
soil properties normally exhibit a high correlation.

(iii) The spatial continuity of soil hydraulic properties along the soil
texture triangle can be described by means of a variogram.
Taking into account that soil texture is the main soil property
considered when grouping soils having similar water retention
curves (Bruand et al., 2003; Ramos et al., 2013; Wösten et al.,
1995), and that the soil texture triangle and the soil hydraulic
triangle can be relatively similar (Twarakavi et al., 2010), we as-
sumed that there could be a spatial dependence of soil hydraulic
properties, at least within the limits of each soil texture class.

The objective of this study is thus to develop ternary diagrams for
estimating point specific water retention values (the field capacity and
wilting point) of Portuguese soils using two geostatistical approaches:
ordinary kriging (OK), and the empirical best linear unbiased predictor
(EBLUP). The available water capacity was later computed from both
ternary diagrams derived from each approach.

2. Material and methods

2.1. Soil dataset

The ternary diagrams were developed for estimating the field
capacity and wilting point of Portuguese soils from particle size
distribution. The field capacity and wilting point were here assumed
to correspond to the water retention values at −33 and −1500 kPa,
respectively (Romano and Santini, 2002). The data was extracted from
the PROPSOLO soil database (Gonçalves et al., 2011), which gathers all
information on soil hydraulic and pedological properties from soil pro-
files obtained from research projects and academic studies performed
at the Portuguese National Institute of Agronomic and Veterinarian
Research (formerly Estação Agronómica Nacional). This database
contains practically all of the existing knowledge on the soil hydraulic
properties of Portuguese soils.

The data included information on soil texture and water retention
properties of 742 horizons/layers studied in 346 soil profiles located in
Portugal between 1977 and 2012 (Fig. 1). It comprised 331 topsoil
(0–30 cm depth) and 411 subsoil (N30 cm depth) horizons. The soil
reference groups (FAO, 2006) represented were Fluvisols (36.4%),
Luvisols (29.5%), Vertisols (9.8%), Cambisols (8.7%), Calcisols (6.6%),
Anthrosols (4.0%), Arenosols (1.4%), Podzols (0.9%), Regosols (0.9%),
Ferralsols (0.6%), Leptosols (0.6%), and Planosols (0.6%).

The data was randomly divided into two subsets, a development set
composed of two-thirds of the data (495 horizons/layers), and a valida-
tion set with the remaining one-third of the data (247 horizons/layers).
Table 1 presents the main physical and chemical properties of the two
datasets. The particle size distribution was obtained using the pipette
method for particles having diameters b2 μm (clay) and between
20–2 μm (silt), and by sieving for particles between 200 and 20 μm
(fine sand) and between 200 and 2000 μm(coarse sand). These textural
classes follow the Portuguese classification system (Gomes and Silva,
1962) and are based on the International Soil Science Society (ISSS)
particle limits (Atterberg scale). The dry bulk density (ρb) was obtained
by drying volumetric soil samples (100 cm3) at 105 °C for 48 h. The
gravimetric water content at−33 kPamatric potential was determined
on undisturbed soil samples (100 cm3) using suction tables (Romano
et al., 2002; used in 494 horizons/layers) or the pressure plate apparatus
(Dane andHopmans, 2002; used in 212horizons/layers). The gravimetric
water content at −1500 kPa matric potential was also determined on
undisturbed soil samples (100 cm3) using the pressure plate apparatus.
Then, the volumetric water content for each horizon/layer and each
matric potential was computed from the gravimetric water contents
and the bulk density of the corresponding horizon/layer.
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In the case of 36 soil horizons/layers where the volumetric water
content at −33 kPa matric potential was not readily available, the
missing values were estimated by introducing values derived from the
fitted van Genuchten model (1980) to each individual water retention
curve, also available in the soil database for all soil horizons/layers.
The van Genuchten model describes the volumetric soil water content,
θ (L3 L−3), as a function ofmatric potential, ψ (L), in the following form:

Se ψð Þ ¼ θ ψð Þ−θr
θs−θr

¼ 1
1þ αψj jηð Þ1−1=η ð1Þ

in which Se is the effective saturation, θr and θs denote the residual and
saturated water contents (L3 L−3), respectively, α (L−1) and η (−) are
empirical shape parameters. This procedure introduced an error to the
subsequent calculations and model evaluations resulting from the
non-perfect fit of the fitted model to the experimental data (RMSE =
0.012 cm3 cm−3), in line with published results (e.g., Nemes and
Rawls, 2006; Ramos et al., 2013). The errors were thus relatively small
compared with the errors usually obtained using PTFs, and therefore,
the fitted values were assumed as if they were measured.

2.2. Development of the ternary diagrams

2.2.1. The interpolation domain
Representing soil water retention values in a ternary diagram

improves its interpretation for the range of possible textures. The results
were therefore shown for the texture triangle, although the coordinates
of the data used for interpolation purposes were converted to metric
coordinates. Hence, thehydraulic triangleswere developed by assuming
that each water retention value available in the development dataset
could be represented in a texture diagram, in the coordinates given by
the particle size distribution of the corresponding samples. Since those
coordinates are given by the relative proportion of the texture constitu-
ents (sand, silt, and clay), they were first transformed into a Cartesian
domain (length variation in the Cartesian domain was equivalent to %
mass variation in the texture triangle), as follows:

y ¼ h � clay %ð Þ
100

ð2Þ

x ¼ − sand %ð Þ þ clay %ð Þ � tan απ
180

� �� �
ð3Þ

where y is the vertical coordinate, dependent only on the clay content
(%), x is the horizontal coordinate, function of sand and clay contents
(%), h is the triangle height (obtained by applying the Pythagorean
theorem), and α is the 30° angle formed between the vertical direction
and the diagonal direction commonly used to represent sand content in
an equilateral texture triangle. Fig. 2 shows the textural distribution of
the datasets used for the development of the ternary diagrams and for
their validation, the process of transformation of the texture coordinates
into Cartesian coordinates, and the final distribution of the datasets in a
Cartesian domain. This transformation allowed for the proportion of the
texture components to be accounted for and the spatial distribution of
soil data to bemaintained (as if it was represented in a texture triangle).
This transformation also considered the directions used to represent
clay (horizontally) and sand (diagonally) contents in an equilateral
texture triangle. Note that soil data could also be represented using
other forms of the texture triangle, namely using a right-triangle. In
this case, no transformations would be necessary since sand and clay
contents could be used directly to represent water content information
as it resembles a Cartesian domain. However, this type of triangle was
not used in our application since it misrepresents the third component
of the texture composition (silt).

After interpolation of the water retention values, the soil texture
triangle was again used to limit the area of the Cartesian domain that
was relevant to this study and to help in understanding water content
estimates by relating them to soil texture. Hence, hydraulic triangles
composed of estimates of θ−33 kPa and θ−1500 kPa were obtained in the
end for a 1% grid of soil texture composition, resulting in 4332 different

Table 1
Main physical and chemical properties of the datasets used in the development and validation of the ternary diagrams.

Statistics Particle size distribution Bulk density Volumetric water contents

2000–200 μm 200–20 μm 20–2 μm b2 μm θ−33 kPa θ−1500 kPa

(%) (g cm−3) (cm3 cm−3)

Development set (n = 495)
Mean 20.7 34.5 21.6 23.2 1.50 0.287 0.162
Std. deviation 17.7 15.2 11.8 14.7 0.18 0.089 0.081
Minimum 0.1 0.7 1.1 0.6 0.91 0.029 0.007
Maximum 94.4 70.7 68.1 63.3 1.90 0.536 0.407

Validation set (n = 247)
Mean 21.4 34.7 20.5 23.4 1.52 0.282 0.158
Std. deviation 17.1 15.4 12.4 14.3 0.18 0.086 0.073
Minimum 0.1 0.8 0.9 0.1 0.92 0.029 0.006
Maximum 94.6 73.6 60.2 62.2 1.87 0.535 0.359

Fig. 1. Location of the soil profiles.
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soil textures (i.e., different combinations of sand, silt, and clay percent-
ages) and corresponding water content estimates.

2.2.2. Geostatistical approaches for the prediction of water retention values
To obtain the spatial distribution of soil water retention values in the

texture triangle we propose to use the kriging estimator. Therefore, the
first step was to obtain a valid spatial model able to describe the varia-
tion of the observed water retention values. This is usually obtained
by inferring a semivariogram to which a model is fitted providing the
necessary parameters required for predicting water retention in
unsampled locations within the triangle.

On thefirst approach, the experimental semivariogramwas computed
using the original water retention data and fitted using a Gaussian
model with nugget effect (Goovaerts, 1997). Ordinary kriging (OK)
was then applied assuming that water retention variation is locally

stationary responding to local changes in texture contents. The OK
estimator (Journel and Huijbregts, 1978) was given as follows:

Z� x0ð Þ ¼
Xn
i¼1

λiZ xið Þ ð4Þ

where Z⁎(x0) are the θ−33 kPa and θ−1500 kPa values to bepredicted, Z(xi)
are thewater retention valuesmeasured at location i, n is the number of
data points within the local neighborhood, and λi are the kriging
weights (which depend on the fitted semivariogram parameters and
the configuration of the values) (Webster and Oliver, 2007). The
semivariogram computation and fitting, and the implementation of
the kriging method were carried out with the geoMS software package
(CMRP, 2000).

y

x

y

x

h

-100

α = 30o

(x, y)

0% Sandx

y

a) b) c)

Fig. 2. Textural distribution of the datasets used in the development and validation of the ternary diagrams (a); conversion of the texture coordinates into Cartesian coordinates (b);
development and validation datasets in the Cartesian domain (c).
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Fig. 3. Experimental semivariograms used with the ordinary kriging (OK) approach.
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The second approach proposed considered that stationarity could
not be assumed even within small neighborhoods as implemented
in OK. In this case, a non-stationary spatial trend was introduced.
A trend model can be provided by a deterministic function able to
define a large scale space pattern or by a set of physical and/or empirical
covariates that are statistically significant to describe the spatial
variation of the attribute Z(xi). For the prediction of water retention
values, the trend can be described by a physical model using a
texture PTF to explain the variability of the soil water content within
the texture triangle. In our case study, the texture PTF can be described
as a regression relationship built with clay, sand and silt contents.

Whenever it is possible to build a trendmodel to explain the attribute's
variability in space, the geostatistical analysis is focused on the residual
component. We can evaluate the contribution of the model residuals
not only to improve the water content predictions, but also to under-
stand to which extent the PTF used as a trend explains the variations
of soil water content observed at particular locations of the ternary
diagram.

When a trend model is considered, the empirical best linear
unbiased predictor (EBLUP) based on residual maximum likelihood
(REML) can be used forwater retention prediction. The best linear unbi-
ased predictor of some variable is computed from a linear mixed model

(h)(h)γγ
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Fig. 4. Experimental semivariogram used with the empirical best linear unbiased predictor (EBLUP) approach.
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(LMM) or a model that contains fixed and random effects (Lark et al.,
2006). If the fixed effect is the unknown mean then this predictor is
equivalent to ordinary kriging.

In our model, the fixed effects were represented by the trendmodel
defined by a linear equation combining clay, silt, and sand contents. The
random effects were the residuals defined in the geostatistical context
as a spatial dependent random variable. The LMM was given by:

z ¼ Xτþ Zuþ ε ð5Þ

where z is a vector of n observed responses (θ−33 kPa or θ−1500 kPa), X is
an n × p design matrix that associates each of the n observations with a
value of each p predictor variable/fixed effect (combination of texture
variables), and τ is a vector that contains the p fixed effect coefficients
(describing the relationship between the fixed effects, X, and the
response, z). The vector u contains q random effects, realizations of a
variable u that are associated with the n observations by the n × q
design matrix Z. The u is a spatially dependent random variable and
the term ε is a vector of independent random errors. These terms are
independent of each other and contain randomerrorswhichare spatially
correlated.

The LMMs were fitted using residual maximum likelihood (REML)
estimation, as suggested by Lark et al. (2006). Backward elimination
wasused for variable selection based on theAkaike information criterion
(AIC). In this study, model fittingwas performed using the geoR package
in R (Diggle and Ribeiro, 2007).

2.3. Assessment of uncertainty of predictions

Prediction uncertainty due to OK and EBLUP was given by the
kriging variance obtained for each grid cell of the ternary diagrams.

For the OK estimator, it was computed as follows (Goovaerts, 1997;
Yates and Warrick, 2002):

σ2
k x0ð Þ ¼

Xn
i¼1

λiγ xi−x0ð Þ þ μ ð6Þ

where γ is the semivariance between data pairs and μ is the Lagrange
parameter accounting for the constraint on the weights λi. The estima-
tion variance of the EBLUP can be expressed generally as follows (see
Lark et al. (2006) for a detailed explanation on how to compute the
variance):

σ2
k f

�
p−fp

� �
¼ σ2 xp

T τ
∧−τ

� �
þ gTo;pG

−1 u
�− up

h i
ð7Þ

where the first term xp
T τ

∧−τ
� �

accounts for the uncertainty due to

estimation error of the fixed and random effects, and the second term

gTo;pG
−1 u

�− up refers to the uncertainty of the interpolated random
effect (which is in fact the kriging variance).

The ternary diagrams were also validated by comparing measured
θ−33 kPa and θ−1500 kPa values included in the validation dataset
with OK and EBLUP estimates using various quantitative measures of
accuracy, such as the determination coefficient (R2), the mean error
(ME), and the root mean square error (RMSE), given by:

R2 ¼

Xn
i¼1

Oi−O
� �

Pi−P
� �

Xn
i¼1

Oi−O
� �2

" #0:5 XE
i¼1

Pi−P
� �2

" #0:5

2
666664

3
777775

2

ð8Þ
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Fig. 6. Estimation variance of the ternary diagrams for soil water content values at−33 kPa matric potential estimated with ordinary kriging (OK) and the empirical best linear unbiased
predictor (EBLUP). Figures on the left show the ISSS texture classes; figures on the right show the contour plots of the variance.
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ME ¼ 1
n

Xn
i¼1

Pi−Oið Þ ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Pi−Oið Þ2

n−1

vuuut
ð10Þ

where n is the number of observations, Oi are the measured values, Pi
are the interpolation predictions, O is the average of the measured
values, and P is the average of the interpolation predictions.

3. Results and discussion

3.1. Spatial patterns of θ−33 kPa and θ−1500 kPa

Fig. 3 presents the experimental and theoretical semivariograms
obtained for θ−33 kPa and θ−1500 kPa and used with the OK approach.
The nugget values for θ−33 kPa and θ−1500 kPa, obtained when fitting
the Gaussianmodel, corresponded to 15.4 and 6.1% of the total variance
(C), respectively. These values explained the sampling or measurement
errors, and the variation that occurs at scales too small to characterize,
which cannot be described only by variations in soil texture. This can
be attributed to the effect of bulk density, organic matter, soil structure,
soil mineralogy, soil chemical composition, and land use and manage-
ment on water retention properties. Like in the development of
traditional PTFs, grouping data by considering the effect of those soil
properties (Wösten et al., 2001) would likely be advantageous in
order to reduce the unexplained variability found in the development

of the ternary diagrams (one example where data was grouped by
bulk density is given in Section 3.4). The larger nugget value found for
the semivariogram of θ−33 kPa may be further related to the different
methodologies used for measuring water retention at −33 kPa matric
potential (Schaap and Leij, 1998).

In the Gaussian variograms, the spatial continuity of θ−33 kPa and
θ−1500 kPa reached a range of 39.7 and 24.6% mass, respectively. Water
retention values were thus correlated with samples located in neighbor
texture classes (up to the distance limit given by the semivariogram),
but more distanced areas of the texture triangle showed no correlation
with those measured values. These findings seem to be very useful to
understand the limitations of the simplest texture based PTFs, the
class-PTFs (Wösten et al., 2001), when estimating water retention
properties for different texture classes. These class-PTFs estimate
average soil water retention properties for different texture classes
based on the arithmetic (e.g., Al Majou et al., 2008; Bruand et al.,
2003; Ramos et al., 2013) or geometric mean (e.g., Wösten et al., 1995,
1999) of the datasets. However, for most regions of the texture triangle
water retention values may sometimes be better correlated with data
included in their vicinity which may well be included in a neighbor
texture class.

For the analysis performed so far we opted to fit a model to
the experimental variograms not taking into consideration that the
variogram given by the data is in fact unbounded. Asmentioned before,
this is often indicative of non-stationarity, i.e., the variation present in
the data can be explained by a spatial trend. The most significant
trendmodel found to explain the variation of soil water values included
sand content and was expressed by the following equations:

θ−33 kPa ¼ 0:4781–0:0036Sand %ð Þ ð11Þ
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Fig. 7. Ternary diagrams for soil water content values at −1500 kPa matric potential estimated with ordinary kriging (OK) and the empirical best linear unbiased predictor (EBLUP).
Figures on the left show the ISSS texture classes; figures on the right show the contour plots of the estimates.
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θ−1500 kPa ¼ 0:3206–0:0028Sand %ð Þ: ð12Þ

These correspond to the optimum LMM fitted to θ−33 kPa and
θ−1500 kPa based on the AIC values. Lower AIC values were obtained for
the spatial model when compared to the nonspatial model (assuming
that model components are independent). These results showed that
the models needed to include spatially correlated residuals to improve
water retention prediction. All around, the residuals accounted for the
variation of clay and silt that were not included in the trend model
therefore reducing prediction uncertainty.

The estimated semivariogram parameters obtained for the residuals
were, for θ−33 kPa, 0.0016% for the nugget value and 19.52% for the range.
For θ−1500 kPa, the resultswere 0.0009% for thenugget and23.09% for the
range. The fitted semivariograms are presented in Fig. 4. For θ−33 kPa, the
nugget value was quite large which may be interpreted as the residuals
contributing less to explain the variation of water content when com-
paredwith the trendprediction. For θ−1500 kPa. thenugget value is rather
small, showing a strong correlation among residuals even at short dis-
tances. Hence, it is expected a higher contribution of the residuals
when predicting the water content in these conditions.

3.2. Ternary diagrams

Fig. 5 presents the ternary diagramdeveloped for estimating θ−33 kPa

from particle size distribution with the OK and EBLUP approaches. The
resulting prediction variance is shown in Fig. 6. Both approaches
revealed, as expected, that soil water retention values at −33 kPa
matric potential were lower in the coarser texture classes and increased
gradually with the increment of clay and silt contents. The EBLUP

approach resulted in a smoother increase of θ−33 kPa from the coarser
to the fine and medium fine texture classes when compared with OK
estimates. The predictions for the regions of the texture triangle
where no information was available (e.g., the silty texture class, and
the region of the texture triangle with clay content higher than 65%)
corresponded to much lower uncertainty values when compared with
the OK approach (Fig. 6). This is probably due to the use of a spatial
trend based on soil texture combinedwith spatially correlated residuals
which also accounted for the texture information that was not included
in the trendmodel. Although both approaches relate to kriging, the fact
that EBLUP considers different contributions within the data results in
better predictions for unsampled locations.

The mean xð Þ and standard deviation (σ) values of the interpolated
OK θ−33 kPa ternary diagram were 0.365 and 0.086 cm3 cm−3, respec-
tively. The corresponding values obtained with the EBLUP approach
were very similar (x = 0.362 cm3 cm−3; σ = 0.082 cm3 cm−3). The
mean interpolated values were thus higher than the one registered in
the development dataset (0.287 cm3 cm−3; Table 1). The differences
found resulted from the fact that the interpolated ternary diagrams
estimated θ−33 kPa for all 4332 soil textures, including regions of the
texture triangle where the development dataset had no information,
thus producing significant differences in the classes of the interpolated
histogramwith higherwater contents (not shown). In the OK approach,
the estimation variance was very high in those regions, and thus local
estimates of θ−33 kPa were not realistic (Fig. 6). In the EBLUP approach,
estimation variance was significantly lower than in the OK approach,
likely more realistic, but nonetheless higher than in the regions where
information was available. For the remaining regions where the ternary
diagrams were well populated with information, the estimation
variance was quite low in either approaches and estimates there were
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Low : 0.0000

High: 0.0036

Low : 0.0011

OK

EBLUP

0.002

0.006

0.0020
0.0025
0.0030

Fig. 8. Estimation variance of the ternary diagrams for soil water content values at−1500 kPamatric potential estimatedwith ordinary kriging (OK) and the empirical best linear unbiased
predictor (EBLUP). Figures on the left show the ISSS texture classes; figures on the right show the contour plots of the variance.
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thus considered to be accurate (the region where information was
available was hereafter defined as corresponding to the area of the
texture triangle where the sum of θ−33 kPa and θ−1500 kPa variance
estimates (Σσ2) provided by the OK estimator was ≤0.003). In this
region, the mean value given by both estimators (OK and EBLUP) and
the mean value of the development dataset tended to be closer (x =
0.334 cm3 cm−3 in the OK approach and 0.337 cm3 cm−3 in the
EBLUP diagram).

Fig. 7 presents the interpolated θ−1500 kPa ternary diagrams devel-
oped with the OK and EBLUP approaches. The respective estimation
variances are given in Fig. 8. In the OK ternary diagrams, soil water
retention values at−1500 kPa matric potential were also lower in the
coarser texture classes and seemed to increase progressively with the
increase of clay content. However, soil water retention did not increase
as gradually as registered for the θ−33 kPa ternary diagram, since
there were a few regions of the texture triangle (e.g., the area in the
vicinity of the soil texture with 50% clay, 32% silt, and 18% sand) that
clearly needed more information when estimating θ−1500 kPa. The
mean and standard deviation values of the interpolated OK θ−1500 kPa

ternary diagram were 0.216 and 0.101 cm3 cm−3, respectively. The
mean value was once again higher than the one in the development
dataset (0.162 cm3 cm−3; Table 1), but it was slightly lower where
Σσ2 ≤ 0.003 ( x = 0.202 cm3 cm−3). In the EBLUP diagrams,
θ−1500 kPa increase followed more clearly the increment of clay and
silt. The increase of the water content throughout the texture triangle
was again smoother than in the corresponding OK ternary diagram.
The mean values in the entire EBLUP domain (x = 0.225 cm3 cm−3)
and in the region where the triangle was more populated ( x =
0.206 cm3 cm−3) were again similar to those obtained with the OK
approach, but σ was lower (σ = 0.075 cm3 cm−3) since the EBLUP
estimator was able to better predict water content values in the regions
of the texture triangle where information was scarcer due to the
statistical relationship between the water contents and the texture
constituents.

The results of the goodness-of-fit tests between measured and pre-
dicted water retention values at both matric potentials are presented
in Table 2. Fig. 9 shows the corresponding scatter plots between
measured and predicted valueswith the OK approach. The OK approach
produced an acceptable prediction of θ−33 kPa and θ−1500 kPa, with ME
values being very close to zero. RMSE values also showed that predic-
tions were relatively accurate. RMSE were 0.040 and 0.033 cm3 cm−3

for the estimates of θ−33 kPa and θ−1500 kPa, respectively. The R2 values
were considerably high and identical for both water contents

(R2 N 0.78), indicating also a good agreement between measurements
and predictions. However, data in the θ−1500 kPa scatter plot was
found to be slightly more dispersed than for θ−33 kPa. The EBLUP
approach produced very similar results. Only, the RMSE and R2 found
for θ−1500 kPa estimates were slightly worse (RMSE = 0.034 cm3 cm
−3; R2 = 0.792) than those obtained with OK.

Table 3 shows the accuracy of published PTFs that are available
for estimating soil hydraulic properties of Portuguese soils, and which
estimates can be compared with those obtained with the ternary
diagrams. We limited our comparison to PTFs that used partially or
the entire dataset used in this study. The class-PTFs developed by
Ramos et al. (2013) produced RMSE values that varied between 0.042
and 0.055 cm3 cm−3 when estimating θ−33 kPa, and between 0.037
and 0.048 cm3 cm−3 when predicting θ−1500 kPa. The best estimates,
achieved with the class-PTFs developed after grouping data by ISSS tex-
ture classes and bulk density, can be comparable with the estimates
given by the ternary diagrams. The point PTFs developed by Ramos
et al. (2014) yielded RMSE values of 0.040 and 0.036 cm3 cm−3 also
when predicting θ−33 kPa and θ-1500 kPa, respectively, thus producing
very similar predictions to those given by OK and EBLUP estimates. On
the other hand, the parametric PTFs developed by Gonçalves et al.
(1997), Wösten et al. (1999), and Ramos et al. (2014) resulted in
slightly higher RMSE values (≥0.046 cm3 cm−3) than those calculated
with estimates given by the ternary diagrams. Hence, Table 3 shows
that similar or even better predictions of θ−33 kPa and θ−1500 kPa can
be obtained with the ternary diagrams. The only predictor needed is
the particle size distribution, while the other comparable PTFs require
relatively more predictors than the needs of those diagrams. In terms
of number of predictors, the ternary diagrams seem to be quite useful
as they are the only PTFs that do not require bulk density, despite results
are given in terms of volumetricwater contents. Although this soil prop-
erty is simple to measure, sampling undisturbed samples in different
soil horizons/layers distributed over large areas in order to measure
bulk density may be a very laborious task.

3.3. Available water capacity

Fig. 10 shows estimates of the available water capacity (AWC),
calculated as the difference between the corresponding θ−33 kPa and
θ−1500 kPa obtained with OK and EBLUP methods, and setting soil
depth to 1 m as reference for comparison between estimates. Fig. 10
also shows the AWC estimation variance, calculated by summing
θ−33 kPa and θ−1500 kPa estimation variances presented earlier in
Figs. 6 and 8. AWCwas calculated only for areas of the ternary diagrams
where the AWC estimation variance was lower than 0.003 (Σσ2 ≤
0.003). Therefore, we considered here only estimates that may be
considered reliable and avoided extrapolations produced by the
geostatistical estimators.

In theOK approach, the largest AWCestimateswere obtained for the
medium fine texture classes. The coarser texture classes and the soils
with 65% clay content presented lower AWC. This seems to be in accord
with AlMajou et al. (2008), where soils with high clay texture showed a
high proportion of water that is not available for plants. However, the
low estimates found for these latter soils were produced in a region of
the ternary diagram where the estimation variance increased rapidly
with the increase of the clay content, i.e., those predictions were near
the limits of a region where the kriging estimator started to extrapolate
information instead of interpolating it, and thus care should be taken
when using that information. On the other hand, the EBLUP estimator,
although revealing the same trends as observed in the OK diagrams,
produced generally smaller AWC values for the selected region of the
texture triangle. This estimator also provided much more interesting
results for the extrapolated region (not shown). Fig. 11 shows the
differences obtained between AWC values estimated with OK and
EBLUP approaches. Positive values indicate larger OK estimates, while
negative values correspond to larger EBLUP estimates. Nevertheless,

Table 2
Results of the statistical analysis between measured θ−33 kPa, θ−1500 kPa, and available
water capacity (AWC) and estimates obtained from the ternary diagrams developed
with ordinary kriging (OK) and the empirical best linear unbiased predictor (EBLUP).

Statistics Volumetric water contents

θ−33 kPa θ−1500 kPa AWC

OK
R2 (−) 0.788 0.802 0.541
ME (cm3 cm−3) −0.001 0.001 −1.71
RMSE (cm3 cm−3) 0.040 0.033 32.17

EBLUP
R2 (−) 0.788 0.792 0.539
ME (cm3 cm−3) 0.002 0.002 −0.12
RMSE (cm3 cm−3) 0.040 0.034 32.08

Data grouping
ρb ≤ xFAO texture class

R2 (−) 0.838 – 0.502
ME (cm3 cm−3) 0.007 – 1.90
RMSE (cm3 cm−3) 0.038 – 35.80

ρb N xFAO texture class

R2 (−) 0.700 – 0.491
ME (cm3 cm−3) –0.008 – −5.32
RMSE (cm3 cm−3) 0.043 – 29.23

ρb, bulk density; x, average.
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the histograms presented in Fig. 12 show that the OK and EBLUP esti-
mates of the AWC were relatively similar. OK produced an average
value of 132.9 mm m−1, a variance of 2546.7, and kurtosis (0.18) and
skewness (0.76) close to zero. EBLUP produced an average value of
131.4 mmm−1, a variance of 1548.3, a kurtosis of −0.62, and a skew-
ness of 0.52. This last estimator produced higher minimums and lower
maximums. However, the Chi-square and Kolmogorov–Smirnov (p
value = 0.00 b 0.01) goodness-of-fit tests rejected the hypothesis that
AWC estimates from either methods were normally distributed at a
level of 99% confidence, likely because soil water content information
in the very fine and medium fine texture classes was missing.

Table 2 shows the goodness-of-fit between calculated and
estimated AWC values. Results obtained from both approaches
produced again similar values, indicating an acceptable precision bias
(ME b −0.12 mm m−1) and a RMSE N32.08 mm m−1. However,
R2 values were more modest (N0.534) than the ones obtained for
θ−33 kPa and θ−1500 kPa.

The ternary diagrams developed in this study (θ−33 kPa, θ−1500 kPa,
and AWC) may potentially be useful for many scientific and technical
domains, but they seem more relevant to agricultural water manage-
ment, particularly irrigation management and scheduling. Various
water balance models require the type of information provided by the

Table 3
Accuracy of published pedotransfer functions in the estimation of water retention values
at−33 and −1500 kPa included in the database.

PTFs Predictors RMSE (cm3 cm−3)

θ−33 kPa θ−1500 kPa

1. Class-PTFs
Ramos et al. (2013) FAO texture classes 0.055 0.048

FAO texture classes + depth 0.054 0.047
FAO texture classes + ρb 0.049 0.047
FAO texture classes + depth + ρb 0.047 0.046
ISSS texture classes 0.049 0.039
ISSS texture classes + depth 0.047 0.038
ISSS texture classes + ρb 0.042 0.037

Wösten et al. (1999) FAO texture classes + depth 0.063 0.051
2. Continuous PTFs
2.1. Point PTFs
Ramos et al. (2014) Si20 μm, C, ρb, Z 0.040 0.036

2.2. Parametric PTFs
Gonçalves et al. (1997) CS, FS, Si20 μm, C, ρb, Z, OM, pH 0.046 0.053
Wösten et al. (1999) Si50 μm, C, ρb, OM, depth 0.049 0.045
Ramos et al. (2014) CS, FS, Si20 μm, C, ρb, Z 0.084 0.051

CS, coarse sand; FS, fine sand; Si20 μm, silt fraction at 20 μm; Si50 μm, silt fraction at 50 μm;
C, clay; ρb, bulk density; Z, mean depth; OM, organic matter; depth, qualitative variable
having the values 1 (topsoils) and 0 (subsoils).
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ternary diagrams here developed at point scale (Chopart et al., 2007;
George et al., 2000; Khaledian et al., 2009; Liu et al., 1998; Rosa et al.,
2012; Steduto et al., 2009). Those that are associated with a geographi-
cal information system and are applied at field scale (Fortes et al., 2005;
Ojeda-Bustamante et al., 2007; Troch et al, 1993) canmake even further
use of the ternary diagrams here developed for estimating soil water
retention properties of Portuguese soils.

86.3 mm m-1

-89.3 mm m-1

Fig. 11. Difference between estimates of the available water capacity calculated with
ordinary kriging and the empirical best linear unbiased predictor.
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Fig. 12. Histogram with estimates of the available water capacity calculated from the
ternary diagrams developed with ordinary kriging (OK) and the empirical best linear
unbiased predictor (EBLUP).
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3.4. The effect of soil structure

As discussed earlier, grouping data by bulk density (ρb) often
contributes for reducing the variability of the datasets and ends up pro-
ducingmore accurate estimates of soil water retention at certain matric
potentials (Wösten et al., 2001). This effect is normally more relevant
for soil water retention values close to saturation, where the correlation
with ρb is higher, than for water retention values in the drier end of the
soil-water retention curve (Al Majou et al., 2008; Bruand et al., 2003;
Ramos et al., 2013). This is also the case of the dataset used in this
study, in which the correlation between ρb and θ−33 kPa reached
−0.531, while between ρb and θ−1500 kPa was only −0.302.

Fig. 13 shows the θ−33 kPa and AWC ternary diagrams after grouping
the development dataset by bulk density. The development dataset was
first grouped by FAO texture classes, and then data was divided based
on the average ρb values of the corresponding FAO texture classes.
Thus, for samples included in the coarse, medium, fine, medium fine,
and very fine texture classes the cutting ρb values were 1.56, 1.54,
1.41, 1.30, and 1.35 g cm−3, respectively. The sub-dataset with the
lowest ρb values ended up containing 200 samples, while the sub-
dataset with the highest ρb values included 242 samples. The ternary
diagrams were developed using OK only since our objective here is
merely demonstrative. The variograms used are also described in
Fig. 3. The AWC diagrams were calculated as the difference between
each of the θ−33 kPa diagrams developed after grouping data by ρb and
the θ−1500 kPa ternary diagram presented in Fig. 7 (the one developed
with the OK approach). The reference soil depth was again 1 m.

Despite our dataset being relatively too small to obtain two distinct
subsets reasonably distributed throughout the texture triangle, the
ternary diagrams obtained after grouping data by ρb were able to

show the effect of soil structure on soil water retention estimates. The
θ−33 kPa ternary diagram developed from the dataset with the lowest
ρb values clearly showed a larger area with water retention values
higher than 0.4 cm3 cm−3, located in the region of the texture triangles
corresponding to the fine texture classes, than the corresponding
diagram produced with the highest ρb values. The negative correlation
between θ−33 kPa and ρb was also notorious in the AWC estimates
produced from each sub-dataset. The average AWC was 147.4 and
110.0 mm m−1 in the region of the ternary diagrams developed from
the subsets with the lowest and highest values of ρb, respectively, and
againwhere Σσ2≤0.003 (as explained above).Moreover, total variance
in the variogram fitted to one of the subsets actually decreased and
hypothesized earlier (Fig. 3). The goodness-of-fit tests, calculated after
also dividing the validation set using the same criteria as the one used
for splitting the development dataset, showed better ME, RMSE and R2

for θ−33 kPa estimates obtained with the subset containing the lowest
ρb values, i.e., with the subset where the effect of soil structure was
more notorious (Table 2). For AWC, the goodness-of-fit tests obtained
were slightly worse than those calculated before splitting data. Thus,
like for the traditional PTFs, grouping data seems here to be also a
promising technique to improve water content estimates in the ternary
diagrams. However, this should be further tested using a much larger,
well distributed soil database than the one currently available in
Portugal and used in this study.

4. Conclusions

The OK and EBLUP approaches were able to provide reliable
estimates of θ−33 kPa, θ−1500 kPa, and AWC using only the relative pro-
portion of different grain size particles (sand, silt, and clay) as input
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data. Predictions were given for a continuous 1% variation grid of the
particle size distribution. Thus, the ternary diagramsmay be considered
a new type of class PTFs. The OK method was helpful to understand
which estimates of the soil water retention were valid based on the
values of the estimation variance, and thus extrapolationswere avoided.
The EBLUP method provided a different interpretation for that data and
allowed us to incorporate more information in the final predictions.
However, it produced similar predictions for θ−33 kPa and θ−1500 kPa as
those obtained with OK. The main advantage of EBLUP was that it was
able to significantly reduce uncertainty in regions of the texture
diagram where information was scarcer.

The RMSE values were lower than 0.040 and 0.034 cm3 cm−3 when
comparing the estimates provided by the θ−33 kPa and θ−1500 kPa ternary
diagrams, respectively, and themeasured values included in the valida-
tion dataset. The OK and EBLUP approaches produced similar RMSE
values. Those values are comparable to the estimates provided by
most of the available PTFs for estimating soil water retention properties
of Portuguese soils. The ternary diagrams may thus serve as simplified
tools for estimating those properties from particle size distribution
and eventually serve as an alternative to the traditional statistical
regression and data mining techniques used to derive PTFs.
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